Maxwell-Chern-Simons Hydrodynamics

Sener Ozonder

arXiv:1004.3883

Maxwell-Chern-Simons Electrodynamics

$$\mathcal{L}_{\text{QCD+QED}} = \sum_{f} \bar{\psi}_{f} \left[i \gamma^{\mu} (\partial_{\mu} - i g A_{\mu}^{a} t^{a} - i q_{f} A_{\mu}) - m_{f} \right] \psi_{f}$$
$$- \frac{1}{4} G^{a\mu\nu} G^{a}_{\mu\nu} - \frac{\theta}{32\pi^{2}} g^{2} G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$

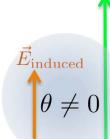
 $ec{B}_{
m external}$

Through quark loops, the electromagnetic sector is effectively

$$\mathcal{L}_{\text{MCS}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - A_{\mu} J^{\mu} - \frac{c}{4} \theta(x, t) F^{\mu\nu} \widetilde{F}_{\mu\nu}$$

(Talks by B. Mueller & M. Stephanov)

Axial anomalies incorporated here!



$$\vec{\nabla} \cdot \vec{E} = \rho - c \vec{\nabla} \theta \cdot \vec{B}$$

$$ec{
abla} imes ec{B} - rac{\partial ec{E}}{\partial t} = ec{J} + c \left(\dot{ heta} ec{B} + ec{
abla} heta imes ec{E}
ight)$$

$$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

Maxwell-Chern-Simons Hydrodynamics

Let's couple quarks to photons in the hydrodynamic picture

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - g^{\mu\nu}P \qquad \Theta^{\mu\nu} = F^{\mu}_{\lambda}F^{\lambda\nu} + \frac{1}{4}g^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}$$
$$(\partial_{\mu}\Theta^{\mu\nu} = -F^{\nu\lambda}J_{\lambda} - cF^{\nu\lambda}\widetilde{F}_{\lambda\rho}\partial^{\rho}\theta)$$

Energy-momentum conservation

$$\partial_{\mu}(T^{\mu\nu} + \Theta^{\mu\nu}) = 0$$

Hydrodynamics with Axial Anomalies

$$\partial_{\mu}T^{\mu\nu} = F^{\nu\lambda}J_{\lambda} + cF^{\nu\lambda}\widetilde{F}_{\lambda\rho}\partial^{\rho}\theta$$
$$J^{\mu} = nu^{\mu}$$

Maxwell-Chern-Simons Hydrodynamics

Using the definitions $E^{\mu} \equiv F^{\mu\nu} u_{\nu}, \ B^{\mu} \equiv \widetilde{F}^{\mu\nu} u_{\nu}$

$$\partial_{\mu}T^{\mu\nu} = nE^{\nu} - cE^{\lambda}B_{\lambda}u^{\nu}u_{\rho}\partial^{\rho}\theta$$

contract with $\ \Delta_{\nu}^{\alpha}=\delta_{\nu}^{\alpha}-u^{\alpha}u_{\nu}$



Euler's Equation $wDu^{\alpha}-\Delta^{\alpha}_{ u}\partial^{\nu}P=nE^{\alpha}$ $P=u_{\mu}\partial^{\mu}$

Entropy Equation
$$\partial_{\mu}s^{\mu} = -\frac{1}{T}cE^{\lambda}B_{\lambda}u_{\rho}\partial^{\rho}\theta$$

$$su^{\mu}$$

$$d(\frac{\epsilon+P}{n}) = Td(\frac{s}{n}) + \frac{1}{n}dP$$

Entropy

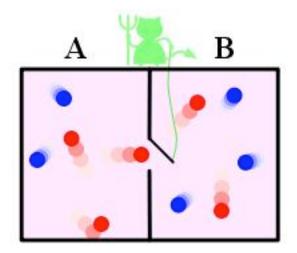
Entropy Equation
$$\partial_{\mu}s^{\mu}=-\frac{1}{T}cE^{\lambda}B_{\lambda}u_{\rho}\partial^{\rho}\theta$$

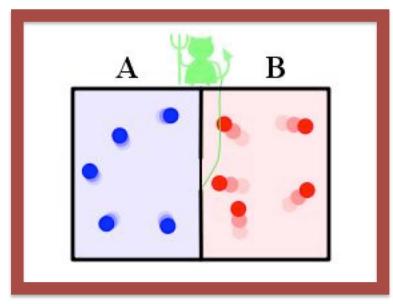
Fact: Entropy can locally increase or decrease!

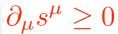
$$\mathcal{L} = \mathcal{L}_{\text{quarks}} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - A_{\mu} J^{\mu} - \frac{c}{4} \theta(x, t) F^{\mu\nu} \widetilde{F}_{\mu\nu}$$

Though, the total entropy should be constant!

Maxwell's Demon







Entropy Revisited

$$\Omega = -P = \frac{T}{V} \ln Z =$$

$$\frac{T}{V} \ln \left[\exp \left(-\frac{V}{T} c \theta E^{\lambda} B_{\lambda} \right) \int [\mathcal{D}q] [\mathcal{D}\bar{q}] [\mathcal{D}A_{\mu}] \exp \left(\int_{0}^{\beta} d\tau \int d^{3}x \mathcal{L}' \right) \right]$$

Modified Gibbs relation

$$\left(\frac{\partial\Omega}{\partial\theta}\right)_{T,\mu} = -cE^{\lambda}B_{\lambda}$$

$$d\left(\frac{\epsilon+P}{n}\right) = Td\left(\frac{\sigma}{n}\right) + \frac{1}{n}dP + \frac{1}{n}R_{\theta}d\theta \qquad \text{(see Aguiar, Fraga \& Kodama)}$$

$$nu^{\mu} \left(\partial_{\mu} \left(\frac{\epsilon + P}{n} \right) - \frac{1}{n} \partial_{\mu} P + \frac{1}{n} c E^{\lambda} B_{\lambda} \partial_{\mu} \theta \right) = 0$$

$$\partial_{\mu}s^{\mu}=0$$

A Simple Picture

$$D\epsilon + w\partial_{\mu}u^{\mu} = -cE^{\lambda}B_{\lambda}D\theta$$

Assumptions:

$$\epsilon, P \text{ constant}$$

$$\theta(x,t) = \tau(t)e^{-r^2}$$

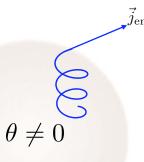
$$\vec{v} = v_x \hat{x}$$

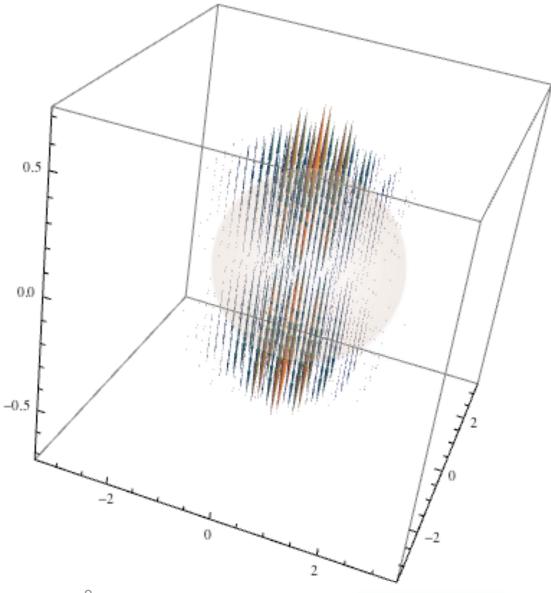
$$\dot{v}_x = 0$$

$$\vec{v}(0) = 0$$

Solution:

$$v_x(x, y, z) = \tanh\left(\frac{c^2}{2} \frac{B^2}{\epsilon + P} \theta \dot{\theta} e^{r^2} \sqrt{\pi} \text{Erf}[\mathbf{x}]\right)$$
 0.0

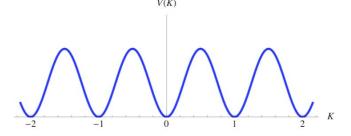




(Kharzeev & Zhitnitsky)

Discussion

• Entropy of the theory with theta-vacuum is conserved. Bloch waves?



• Lowest Landau Levels? For 4 trillion degrees, $k_BT\sim 300MeV$ $\sqrt{eB}\sim 60MeV$

Quantum Hall Effect condition $\hbar\omega_c\ll k_BT$

Chiral spirals? Charge separation based on Lowest Landau Levels?

Instead, maybe charge separation due to the induced electric field?

